Maximal subsets of pairwise non-commuting elements of some finite p-groups

Authors

Abstract:

Let G be a group. A subset X of G is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in X. If |X| ≥ |Y | for any other set of pairwise non-commuting elements Y in G, then X is said to be a maximal subset of pairwise non-commuting elements. In this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian p-groups with central quotient of order less than or equal to p3 for any prime number p. As an immediate consequence we give this cardinality for any non-abelian group of order p4.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

maximal subsets of pairwise non-commuting elements of some finite p-groups

let g be a group. a subset x of g is a set of pairwise noncommuting elements if xy ̸= yx for any two distinct elements x and y in x. if |x| ≥ |y | for any other set of pairwise non-commuting elements y in g, then x is said to be a maximal subset of pairwise non-commuting elements. in this paper we determine the cardinality of a maximal subset of pairwise non-commuting elements in any non-abelian...

full text

maximal subsets of pairwise non-commuting elements of $p$-groups of order less than $p^6$

let $g$ be a non-abelian group of order $p^n$‎, ‎where $nleq 5$ in which $g$ is not extra special of order $p^5$‎. ‎in this paper we determine the maximal size of subsets $x$ of $g$‎ ‎with the property that $xyneq yx$ for any $x,y$ in $x$ with‎ ‎$xneq y$‎.

full text

maximal subsets of pairwise non-commuting elements of p-groups of order less than p^6

let $g$ be a non-abelian group of order $p^n$‎, ‎where $nleq 5$ in which $g$ is not extra special of order $p^5$‎. ‎in this paper we determine the maximal size of subsets $x$ of $g$‎ ‎with the property that $xyneq yx$ for any $x,y$ in $x$ with‎ ‎$xneq y$‎.

full text

Pairwise‎ ‎non-commuting elements in finite metacyclic $2$-groups and some finite $p$-groups

Let $G$ be a finite group‎. ‎A subset $X$ of $G$ is a set of pairwise non-commuting elements‎ ‎if any two distinct elements of $X$ do not commute‎. ‎In this paper‎ ‎we determine the maximum size of these subsets in any finite‎ ‎non-abelian metacyclic $2$-group and in any finite non-abelian $p$-group with an abelian maximal subgroup‎.

full text

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

Maximal non-commuting subsets of groups

Given a finite group G, we consider the problem of finding the maximal size nc(G) of subsets of G that have the property that no two of their elements of commute. After constructing a large noncommuting subset of Sn, we consider the definition and classification of extraspecial p-groups and focus on such a group: S(p.n). We show that nc(S(2, n)) = 2n+ 1 and that S(p, n) ≥ pn+ 1.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 39  issue 1

pages  187- 192

publication date 2013-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023